The DAF-3 Smad binds DNA and represses gene expression in the Caenorhabditis elegans pharynx.

نویسندگان

  • J D Thatcher
  • C Haun
  • P G Okkema
چکیده

Gene expression in the pharyngeal muscles of Caenorhabditis elegans is controlled in part by organ-specific signals, which in the myo-2 gene target a short DNA sequence termed the C subelement. To identify genes contributing to these signals, we performed a yeast one-hybrid screen for cDNAs encoding factors that bind the C subelement. One clone recovered was from daf-3, which encodes a Smad most closely related to vertebrate Smad4. We demonstrated that DAF-3 binds C subelement DNA directly and specifically using gel mobility shift and DNase1 protection assays. Mutation of any base in the sequence GTCTG interfered with binding in the gel mobility shift assay, demonstrating that this pentanucleotide is a core recognition sequence for DAF-3 binding. daf-3 is known to promote formation of dauer larvae and this activity is negatively regulated by TGFbeta-like signaling. To determine how daf-3 affects C subelement enhancer activity in vivo, we examined expression a gfp reporter controlled by a concatenated C subelement oligonucleotide in daf-3 mutants and other mutants affecting the TGFbeta-like signaling pathway controlling dauer formation. Our results demonstrate that wild-type daf-3 can repress C subelement enhancer activity during larval development and, like its dauer-promoting activity, daf-3's repressor activity is negatively regulated by TGFbeta-like signaling. We have examined expression of this gfp reporter in dauer larvae and have observed no daf-3-dependent repression of C activity. These results suggest daf-3 directly regulates pharyngeal gene expression during non-dauer development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antagonistic Smad transcription factors control the dauer/non-dauer switch in C. elegans.

The C. elegans daf-8 gene encodes an R-Smad that is expressed in a subset of head neurons, the intestine, gonadal distal tip cells and the excretory cell. We found that DAF-8, which inhibits the DAF-3 Co-Smad, is associated with DAF-3 and the DAF-14 Smad in vivo and in vitro. Overexpression of daf-8 conferred a dauer-defective phenotype and suppressed constitutive dauer formation in daf-8 and d...

متن کامل

Repression of a Potassium Channel by Nuclear Hormone Receptor and TGF-β Signaling Modulates Insulin Signaling in Caenorhabditis elegans

Transforming growth factor β (TGF-β) signaling acts through Smad proteins to play fundamental roles in cell proliferation, differentiation, apoptosis, and metabolism. The Receptor associated Smads (R-Smads) interact with DNA and other nuclear proteins to regulate target gene transcription. Here, we demonstrate that the Caenorhabditis elegans R-Smad DAF-8 partners with the nuclear hormone recept...

متن کامل

Age-Dependent Neuroendocrine Signaling from Sensory Neurons Modulates the Effect of Dietary Restriction on Longevity of Caenorhabditis elegans

Dietary restriction extends lifespan in evolutionarily diverse animals. A role for the sensory nervous system in dietary restriction has been established in Drosophila and Caenorhabditis elegans, but little is known about how neuroendocrine signals influence the effects of dietary restriction on longevity. Here, we show that DAF-7/TGFβ, which is secreted from the C. elegans amphid, promotes lif...

متن کامل

The 14-3-3 protein FTT-2 regulates DAF-16 in Caenorhabditis elegans.

The Caenorhabditis elegans daf-2/insulin-like signaling pathway is critical for regulating development, longevity, metabolism and stress resistance. We identified the 14-3-3 protein FTT-2 to be a new regulatory component of this pathway. We found that RNAi knock down of ftt-2 specifically enhanced the daf-2-mediated dauer formation phenotype. Furthermore, ftt-2 knock down caused the nuclear acc...

متن کامل

ins-7 Gene Expression Is Partially Regulated by the DAF-16/IIS Signaling Pathway in Caenorhabditis elegans under Celecoxib Intervention

DAF-16 target genes are employed as reporters of the insulin/IGF-1 like signal pathway (IIS), and this is notably true when Caenorhabditis elegans (C. elegans) is used to study the action of anti-aging compounds on IIS activity. However, some of these genes may not be specific to DAF-16, even if their expression levels are altered when DAF-16 is activated. Celecoxib was reported to extend the l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 126 1  شماره 

صفحات  -

تاریخ انتشار 1999